项目名称: 基于原位红外-表面增强拉曼光谱研究微生物介导的砷还原过程

项目编号: No.21307147

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 环境科学、安全科学

项目作者: 杜晶晶

作者单位: 中国科学院生态环境研究中心

项目金额: 26万元

中文摘要: 本项目以砷-微生物作为研究对象,以原位红外-表面增强拉曼联用技术与同步辐射分析方法作为研究手段,考察微界面上发生的微生物介导砷还原过程。从山西省高砷污染地区获得的实际土壤样品分离得到好氧砷还原菌株,通过研究砷与表面增强拉曼探针参与的砷还原菌生长动力学、砷在微生物界面的吸附-脱附过程、微生物胞外多糖与金纳米颗粒的砷协同还原效应,研究金纳米基底-砷-微生物三元体系相互作用。研制红外-表面增强拉曼原位在线检测体系,动态描述微界面溶解态砷的微生物还原过程,结合同步辐射技术分析砷-微生物体系的表面结合构型。通过揭示光谱行为、界面过程、还原机制三者之间的相互联系,从宏观尺度深入到分子水平认识砷-微生物界面反应过程。

中文关键词: 微生物;砷;还原机制;表面增强拉曼;同步辐射

英文摘要: In this project, we will use multiple complementary spectroscopic techniques including in situ Fourier transform infrared (FTIR) spectroscopy, surface enhanced Raman spectroscopy (SERS), and X-ray absorption fine structure (XAFS), to investigate the microbial-mediated arsenate reduction. The highly effective aerobic As(V)-reducing bacteria will be isolated from arsenic contaminated soils in Shanxi, China. We will explore the relationships between nano Au SERS substrate, arsenic, and microbes using the following approach: firstly, monitor the growth curves of As-reducing bacteria in the presence of As-Au probe, then analyze the As adsorption-desorption processes on the microbial surface, and finally study the mutual effect of exopolysaccharides and Au on As(V) reduction. A novel FTIR-SERS flow cell will be assembled for in situ monitoring the dynamic As(V) reduction processes. The molecular-scale configuration of As complexes on bacteria will be proposed using XAFS. Using multidisciplinary studies of spectroscopic characterization, interfacial process, and reduction mechanism, the results should further our understanding in As-bacterial interactions from macro- to molecular-scale.

英文关键词: microorganism;arsenic;reduction mechanism;SERS;Synchrotron radiation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年8月10日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2020年11月27日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
46+阅读 · 2021年10月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【无人机】无人机的自主与智能控制
产业智能官
47+阅读 · 2017年11月27日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
46+阅读 · 2021年10月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员