To achieve promising results on blind image super-resolution (SR), some attempts leveraged the low resolution (LR) images to predict the kernel and improve the SR performance. However, these Supervised Kernel Prediction (SKP) methods are impractical due to the unavailable real-world blur kernels. Although some Unsupervised Degradation Prediction (UDP) methods are proposed to bypass this problem, the \textit{inconsistency} between degradation embedding and SR feature is still challenging. By exploring the correlations between degradation embedding and SR feature, we observe that jointly learning the content and degradation aware feature is optimal. Based on this observation, a Content and Degradation aware SR Network dubbed CDSR is proposed. Specifically, CDSR contains three newly-established modules: (1) a Lightweight Patch-based Encoder (LPE) is applied to jointly extract content and degradation features; (2) a Domain Query Attention based module (DQA) is employed to adaptively reduce the inconsistency; (3) a Codebook-based Space Compress module (CSC) that can suppress the redundant information. Extensive experiments on several benchmarks demonstrate that the proposed CDSR outperforms the existing UDP models and achieves competitive performance on PSNR and SSIM even compared with the state-of-the-art SKP methods.
翻译:为了在盲目图像超分辨率(SR)方面取得有希望的成果,一些尝试利用低分辨率图像预测内核并改进斯洛伐克共和国的性能,然而,由于不存在真实世界模糊的内核,这些受监督的内核预测方法不切实际,尽管提出了一些不受监督的退化预测方法(UDP)来绕过这一问题,但退化嵌入和斯洛伐克共和国特征之间的脱轨/不一致性仍然具有挑战性。通过探索降解嵌入和斯洛伐克共和国特征之间的相互关系,我们发现,联合学习了解的内容和退化特征是最佳的。根据这一观察,提出了一个内容和退化意识SR网络(SKP),具体地说,CDSR包含三个新建立的模块:(1) 轻量级补丁编码用于联合提取内容和降解特征;(2) 采用基于Domain Query 的模块(DQA)来适应性地减少这种不一致性;(3) 基于代码的空间测量模块(CSC)是最佳的。基于这一观测,提出了内容和退化意识的SR网络。具体地说,CDSR网络包含三个新建立的模块:(1) 轻度的光谱断断线(L)用于联合提取内容和退化特性;(2) 基于DIM(S-DP)的拟议空间测量(SBIS)测试(S-comma-compress-s-com-com)的多项试验,可以比比现有标准的多项试验中的一些基准,以现有标准(S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S