Recent breakthrough results by Dagan, Daskalakis, Fishelson and Golowich [2023] and Peng and Rubinstein [2023] established an efficient algorithm attaining at most $\epsilon$ swap regret over extensive-form strategy spaces of dimension $N$ in $N^{\tilde O(1/\epsilon)}$ rounds. On the other extreme, Farina and Pipis [2023] developed an efficient algorithm for minimizing the weaker notion of linear-swap regret in $\mathsf{poly}(N)/\epsilon^2$ rounds. In this paper, we take a step toward bridging the gap between those two results. We introduce the set of $k$-mediator deviations, which generalize the untimed communication deviations recently introduced by Zhang, Farina and Sandholm [2024] to the case of having multiple mediators. We develop parameterized algorithms for minimizing the regret with respect to this set of deviations in $N^{O(k)}/\epsilon^2$ rounds. This closes the gap in the sense that $k=1$ recovers linear swap regret, while $k=N$ recovers swap regret. Moreover, by relating $k$-mediator deviations to low-degree polynomials, we show that regret minimization against degree-$k$ polynomial swap deviations is achievable in $N^{O(kd)^3}/\epsilon^2$ rounds, where $d$ is the depth of the game, assuming constant branching factor. For a fixed degree $k$, this is polynomial for Bayesian games and quasipolynomial more broadly when $d = \mathsf{polylog} N$ -- the usual balancedness assumption on the game tree.
翻译:暂无翻译