In recent years, imitation learning (IL) has been widely used in industry as the core of autonomous vehicle (AV) planning modules. However, previous work on IL planners shows sample inefficiency and low generalisation in safety-critical scenarios, on which they are rarely tested. As a result, IL planners can reach a performance plateau where adding more training data ceases to improve the learnt policy. First, our work presents an IL model using the spline coefficient parameterisation and offline expert queries to enhance safety and training efficiency. Then, we expose the weakness of the learnt IL policy by synthetically generating critical scenarios through optimisation of parameters of the driver's risk field (DRF), a parametric human driving behaviour model implemented in a multi-agent traffic simulator based on the Lyft Prediction Dataset. To continuously improve the learnt policy, we retrain the IL model with augmented data. Thanks to the expressivity and interpretability of the DRF, the desired driving behaviours can be encoded and aggregated to the original training data. Our work constitutes a full development cycle that can efficiently and continuously improve the learnt IL policies in closed-loop. Finally, we show that our IL planner developed with 30 times less training resource still has superior performance compared to the previous state-of-the-art.


翻译:近年来,模仿学习(IL)在工业中被广泛用作自主工具规划模块的核心;然而,IL规划者以往的工作显示,安全临界情景中,安全关键情景的抽样效率低下和一般化程度低,很少对其进行测试;因此,IL规划者可以达到一个性能高地,增加更多的培训数据,从而停止改进所学政策。首先,我们的工作展示了一个使用样板系数参数参数参数和离线专家查询的IL模型,以提高安全和培训效率。然后,我们通过优化驾驶员风险领域的参数,合成地生成关键情景,暴露了所学的IL政策的弱点。这是在基于Lyft预测数据集的多试剂交通模拟器中实施的准人驾驶行为模型。为了不断改进所学的政策,我们用强化的数据重新配置IL模型。由于DRF的清晰度和可解释性,我们所期望的驱动行为可以与原始的培训数据进行编码和汇总。我们的工作构成一个完整的发展周期,可以有效和持续地改进所学的IL风险领域(DRF)政策。最后,我们用关闭的高级资源计划显示,我们仍能与关闭30的高级业绩比较。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员