Fabric manipulation is a long-standing challenge in robotics due to the enormous state space and complex dynamics. Learning approaches stand out as promising for this domain as they allow us to learn behaviours directly from data. Most prior methods however rely heavily on simulation, which is still limited by the large sim-to-real gap of deformable objects or rely on large datasets. A promising alternative is to learn fabric manipulation directly from watching humans perform the task. In this work, we explore how demonstrations for fabric manipulation tasks can be collected directly by human hands, providing an extremely natural and fast data collection pipeline. Then, using only a handful of such demonstrations, we show how a sample-efficient pick-and-place policy can be learned and deployed on a real robot, without any robot data collection at all. We demonstrate our approach on a fabric folding task, showing that our policy can reliably reach folded states from crumpled initial configurations.
翻译:由于巨大的国家空间和复杂的动态,在机器人方面,操纵是一个长期的挑战。 学习方法对于这个领域来说是很有希望的,因为它们使我们能够直接从数据中学习行为。 然而,大多数先前的方法都严重依赖模拟,而模拟仍然受到可变物体巨大模拟到实际差距的限制,或者依赖大型数据集。 一个有希望的替代办法是从观察人类执行任务中直接学习结构操纵。 在这项工作中,我们探索了如何直接由人类手直接收集结构操纵任务的演示,提供极其自然和快速的数据收集管道。 然后,我们只使用少量的这种演示,展示如何在根本不收集机器人数据的情况下,在真正的机器人上学习和部署一个具有抽样效率的选取地点政策。 我们展示了我们在编织任务上的方法,表明我们的政策可以可靠地从倾斜的初始配置中找到折叠状态。