Because of the advantages of computation complex- ity compared with traditional localization algorithms, fingerprint based localization is getting increasing demand. Expanding the fingerprint database from the frequency domain by channel reconstruction can improve localization accuracy. However, in a mobility environment, the channel reconstruction accuracy is limited by the time-varying parameters. In this paper, we proposed a system to extract the time-varying parameters based on space-alternating generalized expectation maximization (SAGE) algorithm, then used variational auto-encoder (VAE) to reconstruct the channel state information on another channel. The proposed scheme is tested on the data generated by the deep- MIMO channel model. Mathematical analysis for the viability of our system is also shown in this paper.
翻译:暂无翻译