This paper presents a cross-lingual sentiment analysis of news articles using zero-shot and few-shot learning. The study aims to classify the Croatian news articles with positive, negative, and neutral sentiments using the Slovene dataset. The system is based on a trilingual BERT-based model trained in three languages: English, Slovene, Croatian. The paper analyses different setups using datasets in two languages and proposes a simple multi-task model to perform sentiment classification. The evaluation is performed using the few-shot and zero-shot scenarios in single-task and multi-task experiments for Croatian and Slovene.
翻译:本文利用零点和零点学习对新闻文章进行跨语言情绪分析,研究的目的是利用斯洛文尼亚数据集对克罗地亚新闻文章进行正面、负面和中性的分类,该系统以三种语言(英语、斯洛文尼亚语、克罗地亚语)培训的三种语言BERT模式为基础,用两种语言的数据集分析不同的设置,并提出一个简单的多任务模式来进行情绪分类,评价是利用克罗地亚语和斯洛文尼亚语的单任务和多任务实验中的微点和零点情景进行的。