Graph neural networks (GNNs) have been proposed for a wide range of graph-related learning tasks. In particular, in recent years there has been an increasing number of GNN systems that were applied to predict molecular properties. However, in theory, there are infinite choices of hyperparameter settings for GNNs, and a direct impediment is to select appropriate hyperparameters to achieve satisfactory performance with lower computational cost. Meanwhile, the sizes of many molecular datasets are far smaller than many other datasets in typical deep learning applications, and most hyperparameter optimization (HPO) methods have not been explored in terms of their efficiencies on such small datasets in molecular domain. In this paper, we conducted a theoretical analysis of common and specific features for two state-of-the-art and popular algorithms for HPO: TPE and CMA-ES, and we compared them with random search (RS), which is used as a baseline. Experimental studies are carried out on several benchmarks in MoleculeNet, from different perspectives to investigate the impact of RS, TPE, and CMA-ES on HPO of GNNs for molecular property prediction. In our experiments, we concluded that RS, TPE, and CMA-ES have their individual advantages in tackling different specific molecular problems. Finally, we believe our work will motivate further research on GNN as applied to molecular machine learning problems in chemistry and materials sciences.


翻译:特别是,近年来,用于预测分子特性的GNN系统越来越多,但理论上,GNN的超参数设置有无限的选择,直接的障碍是选择适当的超参数,以较低的计算成本达到令人满意的性能。与此同时,许多分子数据集的规模远远小于典型的深层学习应用中的其他数据集,而且大多数超参数优化方法尚未就其在分子领域这种小数据集上的效率进行探讨。在本文中,我们对GNNN的两种最先进和受欢迎的算法(TPE和CMA-ES)的共同和具体特点进行了理论分析,并将它们与随机搜索(RS)进行比较,后者用作基线。从不同角度对MoleculeNet中的若干基准进行了实验研究,以调查RS、TPE和CMA对分子领域的这种小数据集的影响。 在本文中,我们对GESNPE的两种最先进和流行的算法进行了理论分析,我们最后认为,GSPNPE和CMA的单个分子特性研究将使我们的化学研究具有不同的研究优势。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
专知会员服务
39+阅读 · 2020年10月15日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2020年2月5日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年10月15日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
相关论文
Arxiv
0+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2020年2月5日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员