【KDD2020】更深的图神经网络,Towards Deeper Graph Neural Networks

2020 年 7 月 22 日 专知
【KDD2020】更深的图神经网络,Towards Deeper Graph Neural Networks


图神经网络在图表示学习领域取得了显著的成功。图卷积执行邻域聚合,并表示最重要的图运算之一。然而,这些邻域聚合方法的一层只考虑近邻,当进一步启用更大的接受域时,性能会下降。最近的一些研究将这种性能下降归因于过度平滑问题,即重复传播使得不同类的节点表示无法区分。在这项工作中,我们系统地研究这一观察结果,并对更深的图神经网络发展新的见解。本文首先对这一问题进行了系统的分析,认为当前图卷积运算中表示变换与传播的纠缠是影响算法性能的关键因素。将这两种操作解耦后,更深层次的图神经网络可用于从更大的接受域学习图节点表示。在建立深度模型时,我们进一步对上述观察结果进行了理论分析,这可以作为过度平滑问题的严格而温和的描述。在理论和实证分析的基础上,我们提出了深度自适应图神经网络(DAGNN),以自适应地吸收来自大接受域的信息。一组关于Citation、合著和共购数据集的实验证实了我们的分析和见解,并展示了我们提出的方法的优越性。


https://arxiv.org/abs/2007.09296

专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DGNN” 可以获取《【KDD2020】更深的图神经网络,Towards Deeper Graph Neural Networks》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
20

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

图的深度学习方法在许多节点级和图级预测任务中都取得了显著的效果。然而,尽管这些方法大量涌现并取得了成功,但主流的图神经网络(GNNs)忽略了子图,使得子图预测任务在许多有影响的应用中难以处理。此外,子图预测任务提出了几个独特的挑战,因为子图可以有非平凡的内部拓扑,但也携带了相对于其存在的底层图的位置和外部连接信息的概念。在这里,我们介绍了子GNN,一种学习解纠缠子图表示的子图神经网络。特别是,我们提出了一种新的子图路由机制,它在子图的组件和随机抽样的基础图锚块之间传播神经信息,从而产生高度精确的子图表示。SUB-GNN指定了三个通道,每个通道都设计用于捕获子图结构的不同方面,我们提供了经验证据证明这些通道编码了它们预期的属性。我们设计了一系列新的合成的和真实的子图数据集。对8个数据集进行子图分类的实证结果表明,子GNN实现了可观的性能提升,比最强的baseline方法(包括节点级和图级gnn)的性能高出12.4%。当子图具有复杂的拓扑结构,甚至包含多个断开连接的组件时,子GNN在具有挑战性的生物医学数据集上表现得非常好。

https://www.zhuanzhi.ai/paper/9c11ef35cfb6b6a3ac7f8d547b9b59e6

成为VIP会员查看完整内容
0
34

图神经网络在处理基于图数据问题方面取得了巨大的成功,受到了广泛的关注和应用。GNNs通常是基于消息传递的方式设计的,本质思想即迭代地聚合邻居信息,而经过次的迭代后, 层GNNs能够捕获节点的K-hop局部结构,学习来自跳邻居的信息。因此更深层的GNN就能够访问更多的邻居信息,学习与建模远距离的节点关系,从而获得更好的表达能力与性能。而在实际在做深层GNN操作时,往往会面临着两类问题:1. 随着层数的增加,GNNs的性能会大幅下降;2. 随着层数的增加,利用GNNs进行训练与推断时需要的计算量会指数上升。对于第一个问题来说,现有的很多工作分析出深层GNNs性能下降的原因是受到了过平滑问题的影响,并提出了缓解过平滑的解决方案;而对于第二个问题来说,设计方案模拟深层GNNs的表现能力并减少GNNs的计算消耗也成了亟待解决的需求,比如用于实时系统的推断。针对这两个问题,本文将分别介绍两个在KDD 2020上的关于深度GNNs的最新工作。

第一个工作是Research Track的《Towards Deeper Graph Neural Networks》。该工作从另一个角度去解读深度图神经网络随着层数增加性能下降的问题,认为影响性能下降的主要原因是Transformation和Propagation两个过程的纠缠影响作用,并且基于分析结果设计了深度自适应图神经网络(Deep Adaptive Graph Neural Networks) 模型,能够有效地缓解深层模型的性能快速下降问题。

第二个工作是Research Track的《TinyGNN: Learning Efficient Graph Neural Networks》。该工作尝试训练small GNN(浅层)去模拟Deep GNN(深层)的表达能力和表现效果,致力于应用在实时系统推断等对推断速度有较高要求的场景。

成为VIP会员查看完整内容
0
39

题目: Continuous Graph Neural Networks

摘要:

本文建立了图神经网络与传统动力系统之间的联系。我们提出了持续图神经网络(CGNN),它将现有的图神经网络与离散动力学进行了一般化,因为它们可以被视为一种特定的离散化方案。关键思想是如何表征节点表示的连续动力学,即关于时间的节点表示的导数。受现有的基于扩散的图方法(如社交网络上的PageRank和流行模型)的启发,我们将导数定义为当前节点表示、邻节点表示和节点初始值的组合。我们提出并分析了两种可能的动态图,包括节点表示的每个维度(又名特征通道)各自改变或相互作用的理论证明。所提出的连续图神经网络在过度平滑方面具有很强的鲁棒性,因此允许我们构建更深层次的网络,进而能够捕获节点之间的长期依赖关系。在节点分类任务上的实验结果证明了我们提出的方法在和基线对比的有效性。

介绍

图神经网络(GNNs)由于其在节点分类等多种应用中的简单性和有效性而受到越来越多的关注;、链接预测、化学性质预测、自然语言理解。GNN的基本思想是设计多个图传播层,通过聚合邻近节点的节点表示和节点本身的表示,迭代地更新每个节点表示。在实践中,对于大多数任务,几层(两层或三层)通常就足够了,更多的层可能导致较差的性能。

改进GNNs的一个关键途径是能够建立更深层次的网络,以了解数据和输出标签之间更复杂的关系。GCN传播层平滑了节点表示,即图中相邻的节点变得更加相似。当我们堆叠越来越多的层时,这会导致过度平滑,这意味着节点表示收敛到相同的值,从而导致性能下降。因此,重要的是缓解节点过平滑效应,即节点表示收敛到相同的值。

此外,对于提高我们对GNN的理论理解,使我们能够从图结构中描述我们可以学到的信号,这是至关重要的。最近关于理解GCN的工作(Oono和Suzuki, 2020)认为GCN是由离散层定义的离散动力系统。此外,Chen等人(2018)证明了使用离散层并不是构建神经网络的唯一视角。他们指出,带有剩余连接的离散层可以看作是连续ODE的离散化。他们表明,这种方法具有更高的记忆效率,并且能够更平滑地建模隐藏层的动态。

我们利用基于扩散方法的连续视角提出了一种新的传播方案,我们使用来自常微分方程(即连续动力系统)的工具进行分析。事实上,我们能够解释我们的模型学习了什么表示,以及为什么它不会遭受在GNNs中常见的过度平滑问题。允许我们建立更深层次的网络,也就是说我们的模型在时间价值上运行良好。恢复过平滑的关键因素是在连续设置中使用了最初在PageRank中提出的原始分布。直观上,重新开始分布有助于不忘记邻接矩阵的低幂次信息,从而使模型收敛到有意义的平稳分布。

本文的主要贡献是:

  • 基于PageRank和扩散方法,提出了两个连续递增模型容量的ODEs;
  • 我们从理论上分析了我们的层学习的表示,并表明当t → ∞我们的方法接近一个稳定的不动点,它捕获图结构和原始的节点特征。因为我们在t→∞时是稳定的,我们的网络可以有无限多个“层”,并且能够学习远程依赖关系;
  • 我们证明了我们的模型的记忆是高效的,并且对t的选择是具有鲁棒性的。除此之外,我们进一步证明了在节点分类任务上,我们的模型能够比许多现有的最先进的方法表现更好。
成为VIP会员查看完整内容
0
87
小贴士
相关论文
Simone Scardapane,Indro Spinelli,Paolo Di Lorenzo
15+阅读 · 2020年7月13日
Graph Transformer for Graph-to-Sequence Learning
Deng Cai,Wai Lam
4+阅读 · 2019年11月30日
Geometric Graph Convolutional Neural Networks
Przemysław Spurek,Tomasz Danel,Jacek Tabor,Marek Śmieja,Łukasz Struski,Agnieszka Słowik,Łukasz Maziarka
7+阅读 · 2019年9月11日
Position-aware Graph Neural Networks
Jiaxuan You,Rex Ying,Jure Leskovec
7+阅读 · 2019年6月11日
Liang Yao,Chengsheng Mao,Yuan Luo
26+阅读 · 2018年11月13日
Haoyu Wang,Vivek Kulkarni,William Yang Wang
5+阅读 · 2018年10月31日
Keyulu Xu,Weihua Hu,Jure Leskovec,Stefanie Jegelka
17+阅读 · 2018年10月1日
Jian Du,Shanghang Zhang,Guanhang Wu,Jose M. F. Moura,Soummya Kar
3+阅读 · 2018年2月11日
Petar Veličković,Guillem Cucurull,Arantxa Casanova,Adriana Romero,Pietro Liò,Yoshua Bengio
6+阅读 · 2018年2月4日
Chong Wang,David Blei,David Heckerman
3+阅读 · 2015年5月16日
Top