Clouds play a critical role in the Earth's energy budget and their potential changes are one of the largest uncertainties in future climate projections. However, the use of satellite observations to understand cloud feedbacks in a warming climate has been hampered by the simplicity of existing cloud classification schemes, which are based on single-pixel cloud properties and cannot consider spatial structures and textures. Recent advances in computer vision enable the grouping of different patterns of images without using human predefined labels, providing a novel means of automated cloud classification. This unsupervised learning approach allows discovery of unknown climate-relevant cloud patterns, and the automated processing of large datasets. We describe here the use of such methods to generate a new AI-driven Cloud Classification Atlas (AICCA), which leverages 22 years and 800 terabytes of MODIS satellite observations over the global ocean. We use a rotationally invariant cloud clustering (RICC) method to classify those observations into 42 AI-generated cloud class labels at ~100 km spatial resolution. As a case study, we use AICCA to examine a recent finding of decreasing cloudiness in a critical part of the subtropical stratocumulus deck, and show that the change is accompanied by strong trends in cloud classes.
翻译:云云在地球能源预算中发挥着关键作用,其潜在变化是未来气候预测中最大的不确定性之一。然而,利用现有云层分类办法的简单性阻碍了使用卫星观测来了解气候变暖时云的反馈,因为现有云层分类办法以单像云性质为基础,无法考虑空间结构和纹理。计算机视野的最近进展使得在不使用人类预先定义的标签的情况下对不同图像模式进行分组,提供了一种新的自动云层分类手段。这种未经监督的学习方法使得能够发现未知的气候相关云层模式和大型数据集的自动处理。我们在这里描述使用这些方法生成新的AI驱动云层分类图集(AICCA)的情况,该图集在全球海洋上利用了22年和800兆字节的MODIS卫星观测。我们使用一种旋转式的云层组合法将这些观测结果分类成42个AI-产生的云层等级标签,分布在~100公里的空间分辨率分辨率上。我们利用AIACCA来考察最近发现在亚形层层层层结构中关键部分的云度减少的云度变化情况。