We propose a least-squares method involving the recovery of the gradient and possibly the Hessian for elliptic equation in nondivergence form. As our approach is based on the Lax--Milgram theorem with the curl-free constraint built into the target (or cost) functional, the discrete spaces require no inf-sup stabilization. We show that standard conforming finite elements can be used yielding apriori and aposteriori convergnece results. We illustrate our findings with numerical experiments with uniform or adaptive mesh refinement.


翻译:我们建议采用最小平方法,包括以非引力形式回收梯度,并可能采用海珊法来回收椭圆方程。由于我们的方法以Lax-Milgram理论为基础,在目标(或成本)功能中设置了无曲线限制,离散空间不需要内向稳定。我们表明,标准符合限定要素的可使用可产生优先和等离异结果。我们用统一或适应性网格改进的数字实验来说明我们的结论。

0
下载
关闭预览

相关内容

【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员