The Galerkin difference (GD) basis is a set of continuous, piecewise polynomials defined using a finite difference like grid of degrees of freedom. The one dimensional GD basis functions are naturally extended to multiple dimensions using the tensor product constructions to quadrilateral elements for discretizing partial differential equations. Here we propose two approaches to handling complex geometries using the GD basis within a discontinuous Galerkin finite element setting: (1) using non-conforming, curvilinear GD elements and (2) coupling affine GD elements with curvilinear simplicial elements. In both cases the (semidiscrete) discontinuous Galerkin method is provably energy stable even when variational crimes are committed and in both cases a weight-adjusted mass matrix is used, which ensures that only the reference mass matrix must be inverted. Additionally, we give sufficient conditions on the treatment of metric terms for the curvilinear, nonconforming GD elements to ensure that the scheme is both constant preserving and conservative. Numerical experiments confirm the stability results and demonstrate the accuracy of the coupled schemes.
翻译:Galerkin 差异(GD) 基础是一组连续的、零碎的多元分子,使用自由度的网格等有限差异来定义。一个维维GD基函数自然地扩展到多个维度,使用高压产品构造的四边元素来分解部分差异方程式。这里我们建议了两种方法,在不连续的GD基元素设置内,使用GD基元素处理复杂的地貌: (1) 使用不兼容的、卷轴的GD元素,(2) 将卷轴的GD元素与卷轴的简化元素结合在一起。在这两种情况下,(缩影)不连续的Galerkin方法都具有可观察到的能源稳定性,即使实施了变异性犯罪,而且在两种情况下都使用了加权调整的质量矩阵,这就确保只有参考质量矩阵必须倒置。 此外,我们对曲线矩阵的参数的处理规定充分条件,不兼容的GD元素确保该计划既能持续保存,又具有保守性。 数字实验证实了组合计划的稳定性和准确性。