In this article, we aim to recover locally conservative and $H(div)$ conforming fluxes for the linear Cut Finite Element Solution with Nitsche's method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in the Raviart-Thomas space is completely local and does not require to solve any mixed problem. The $L^2$-norm of the difference between the numerical flux and the recovered flux can then be used as a posteriori error estimator in the adaptive mesh refinement procedure. Theoretically we are able to prove the global reliability and local efficiency. The theoretical results are verified in the numerical results. Moreover, in the numerical results we also observe optimal convergence rate for the flux error.
翻译:在此篇文章中, 我们的目标是回收本地保守的和$H( div) 等值的通量, 以便用尼采( Nitsche) 的方法解决 Dirichlet 边界状态下的 Poisson 问题。 计算Raviart- Thomas 空间的保守通量是完全局部的, 不需要解决任何混合问题。 数字通量和回收通量之间的差价以$L$2美元为上下角, 然后可以用作适应网状改进程序中的事后误差估计符。 理论上, 我们能够证明全球的可靠性和本地效率。 理论结果在数字结果中被验证。 此外, 在数字结果中, 我们还观察到通量错误的最佳趋同率 。