We consider a projection method for time-dependent incompressible Navier-Stokes equations with a total pressure boundary condition. The projection method is one of the numerical calculation methods for incompressible viscous fluids often used in engineering. In general, the projection method needs additional boundary conditions to solve a pressure-Poisson equation, which does not appear in the original Navier-Stokes problem. On the other hand, many mechanisms generate flow by creating a pressure difference, such as water distribution systems and blood circulation. We propose a new additional boundary condition for the projection method with a Dirichlet-type pressure boundary condition and no tangent flow. We demonstrate stability for the scheme and establish error estimates for the velocity and pressure under suitable norms. A numerical experiment verifies the theoretical convergence results. Furthermore, the existence of a weak solution to the original Navier-Stokes problem is proved by using the stability.
翻译:我们考虑的是具有总压力边界条件的基于时间的压压性纳维埃-斯托克斯方程式的预测方法。投影方法是工程中常用的不压缩粘结液的数值计算方法之一。一般而言,投影方法需要额外的边界条件来解决压力-波斯松方程式,这在最初的纳维尔-斯托克斯问题中并不存在。另一方面,许多机制通过造成压力差异而产生流动,例如水分配系统和血液循环。我们为投影方法提出了一个新的附加边界条件,它具有diriclet型的压力边界条件,没有相干流。我们为投法展示了方案稳定性,并在适当规范下为速度和压力确定了误差估计数。一个数字实验可以验证理论趋同结果。此外,使用稳定性可以证明原纳维埃-斯托克斯问题存在较弱的解决办法。