In this paper, we study the convergence analysis for a robust stochastic structure-preserving Lagrangian numerical scheme in computing effective diffusivity of time-dependent chaotic flows, which are modeled by stochastic differential equations (SDEs). Our numerical scheme is based on a splitting method to solve the corresponding SDEs in which the deterministic subproblem is discretized using structure-preserving schemes while the random subproblem is discretized using the Euler-Maruyama scheme. We obtain a sharp and uniform-in-time convergence analysis for the proposed numerical scheme that allows us to accurately compute long-time solutions of the SDEs. As such, we can compute the effective diffusivity for time-dependent flows. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing effective diffusivity for the time-dependent Arnold-Beltrami-Childress (ABC) flow and Kolmogorov flow in three-dimensional space.


翻译:在本文中,我们研究了在计算基于时间的混乱流的有效差异性时,用基于时间的差别方程式(SDEs)模拟的基于时间的混乱流的有效差异性时,对稳健的随机分解结构结构保存的拉格朗日数字制的趋同性分析。我们的数字制基于一种分解方法,以解决相应的SDEs,其中确定性的子问题使用结构保存法分解,随机的子问题则使用Euler-Maruyama法分解。我们对拟议的数字制进行了敏锐和统一的时间趋同性分析,从而使我们能够准确地计算出基于时间的流的长久解决方案。因此,我们可以对基于时间的流进行有效的差异性计算。最后,我们提出数字结果,以表明拟议的方法在计算依赖时间的Arnold-Beltrami-Chilests(ABC)流和三维空间的科尔莫戈罗夫流时的准确性和效率。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
69+阅读 · 2020年4月7日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
ICLR 2018最佳论文AMSGrad能够取代Adam吗
论智
6+阅读 · 2018年4月20日
已删除
将门创投
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月22日
VIP会员
相关资讯
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
ICLR 2018最佳论文AMSGrad能够取代Adam吗
论智
6+阅读 · 2018年4月20日
已删除
将门创投
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员