Slip is a very common phenomena present in wheeled mobile robotic systems. It has undesirable consequences such as wasting energy and impeding system stability. To tackle the challenge of mobile robot trajectory tracking under slippery conditions, we propose a hierarchical framework that learns and adapts gains of the tracking controllers simultaneously online. Concretely, a reinforcement learning (RL) module is used to auto-tune parameters in a lateral predictive controller and a longitudinal speed PID controller. Experiments show the necessity of simultaneous gain tuning, and have demonstrated that our online framework outperforms the best baseline controller using fixed gains. By utilizing online gain adaptation, our framework achieves robust tracking performance by rejecting slip and reducing tracking errors when the mobile robot travels through various terrains.
翻译:滑动是轮式移动机器人系统中一种非常常见的现象。 滑动是车轮移动机器人系统中的一种非常常见的现象。 滑动具有浪费能源和阻碍系统稳定性等不良后果。 为了应对移动机器人轨迹追踪在滑滑条件下的挑战, 我们提议了一个分级框架, 同时在网上学习和调整跟踪控制器的收益。 具体地说, 一个强化学习模块( RL) 用于横向预测控制器和长垂直速度PID控制器中的自动调试参数。 实验显示同时调试收益的必要性, 并表明我们的在线框架比使用固定收益的最佳基线控制器要好。 通过利用在线收益调整, 我们的框架通过拒绝滑动和减少在移动机器人穿越不同地形时的跟踪错误, 实现了强大的跟踪性能。