Class-Incremental Learning updates a deep classifier with new categories while maintaining the previously observed class accuracy. Regularizing the neural network weights is a common method to prevent forgetting previously learned classes while learning novel ones. However, existing regularizers use a constant magnitude throughout the learning sessions, which may not reflect the varying levels of difficulty of the tasks encountered during incremental learning. This study investigates the necessity of adaptive regularization in Class-Incremental Learning, which dynamically adjusts the regularization strength according to the complexity of the task at hand. We propose a Bayesian Optimization-based approach to automatically determine the optimal regularization magnitude for each learning task. Our experiments on two datasets via two regularizers demonstrate the importance of adaptive regularization for achieving accurate and less forgetful visual incremental learning.
翻译:类增量学习通过添加新类别来更新深度分类器,同时保持先前观察到的类别准确性。正则化神经网络权重是防止遗忘先前学习过的类别同时学习新类别的常见方法。但是,现有的正则化器在整个学习会话中都采用固定的强度,这可能无法反映增量学习过程中遇到的任务难度的不同水平。本研究调查了在类增量学习中使用适应性正则化的必要性,该方法根据当前任务的复杂程度动态调整正则化强度。我们提出了一种基于贝叶斯优化的方法来自动确定每个学习任务的最佳正则化强度。通过两个正则化器对两个数据集的实验,我们证明了适应性正则化对于实现准确且遗忘较少的视觉增量学习的重要性。