This paper considers the problem of managing single or multiple robots and proposes a cloud-based robot fleet manager, Adaptive Goal Management (AGM) System, for teams of unmanned mobile robots. The AGM system uses an adaptive goal execution approach and provides a restful API for communication between single or multiple robots, enabling real-time monitoring and control. The overarching goal of AGM is to coordinate single or multiple robots to productively complete tasks in an environment. There are some existing works that provide various solutions for managing single or multiple robots, but the proposed AGM system is designed to be adaptable and scalable, making it suitable for managing multiple heterogeneous robots in diverse environments with dynamic changes. The proposed AGM system presents a versatile and efficient solution for managing single or multiple robots across multiple industries, such as healthcare, agriculture, airports, manufacturing, and logistics. By enhancing the capabilities of these robots and enabling seamless task execution, the AGM system offers a powerful tool for facilitating complex operations. The effectiveness of the proposed AGM system is demonstrated through simulation experiments in diverse environments using ROS1 with Gazebo. The results show that the AGM system efficiently manages the allocated tasks and missions. Tests conducted in the manufacturing industry have shown promising results in task and mission management for both a single Mobile Industrial Robot and multiple Turtlebot3 robots. To provide further insights, a supplementary video showcasing the experiments can be found at https://github.com/mukmalone/ AdaptiveGoalManagement.
翻译:本文考虑了管理单个或多个机器人的问题,并提出了一种云基础机器人车队管理器:自适应目标管理(AGM)系统,用于无人机队伍。AGM系统采用自适应目标执行方法,并提供用于单个或多个机器人之间通信的RESTful API,实现实时监控和控制。AGM的总体目标是协调单个或多个机器人在环境中有效地完成任务。目前已有一些现有工作为管理单个或多个机器人提供了各种解决方案,但所提出的AGM系统被设计为是可适应和可扩展的。这使得它适合于在具有动态变化的不同环境中管理多种异构机器人。所提出的AGM系统在多个行业中提供了一个多才多艺和高效的解决方案,例如医疗保健、农业、机场、制造业和物流等。通过增强这些机器人的能力并实现无缝的任务执行,AGM系统提供了一个促进复杂操作的强大工具。在ROS1和Gazebo中使用仿真实验证明了所提出的AGM系统的有效性。结果表明,AGM系统有效地管理了分配的任务和任务。在制造业进行的测试显示,单个移动工业机器人和多个Turtlebot3机器人的任务和任务管理方面都取得了有前途的结果。为了提供更多见解,可以在https://github.com/mukmalone/ AdaptiveGoalManagement中找到展示实验的补充视频。