Cybersecurity breaches are the common anomalies for distributed cyber-physical systems (CPS). However, the cyber security breach classification is still a difficult problem, even using cutting-edge artificial intelligence (AI) approaches. In this paper, we study the multi-class classification problem in cyber security for attack detection. A challenging multi-node data-censoring case is considered. In such a case, data within each data center/node cannot be shared while the local data is incomplete. Particularly, local nodes contain only a part of the multiple classes. In order to train a global multi-class classifier without sharing the raw data across all nodes, the main result of our study is designing a multi-node multi-class classification ensemble approach. By gathering the estimated parameters of the binary classifiers and data densities from each local node, the missing information for each local node is completed to build the global multi-class classifier. Numerical experiments are given to validate the effectiveness of the proposed approach under the multi-node data-censoring case. Under such a case, we even show the out-performance of the proposed approach over the full-data approach.
翻译:网络安全违规是分布式网络物理系统(CPS)常见的异常现象。然而,即使使用尖端人工智能(AI)方法,网络安全违规分类仍然是一个棘手的问题。在本文中,我们研究了网络安全中的多级分类问题,以便侦测攻击。我们考虑了一个具有挑战性的多节数据检查案例。在这种情况下,每个数据中心/节点内的数据无法共享,而当地数据不完整。特别是,本地节点只包含多级数据的一部分。为了培训一个全球多级的多级分类器,而不在所有节点共享原始数据,我们研究的主要成果是设计一个多节多级多级分类共性分类方法。通过收集每个本地节点的双节点分类和数据密度的估计参数,每个本地节点的缺失信息已经完成,以构建全球多级分类器。做了数量实验,以验证多节点数据普查中的拟议方法的有效性。在这样一例中,我们甚至展示了拟议方法在全面数据分类中超轨的绩效。