项目名称: 粘接结构温度疲劳损伤的非线性超声检测与评价
项目编号: No.11472039
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 税国双
作者单位: 北京交通大学
项目金额: 90万元
中文摘要: 粘接结构广泛应用于航空航天等领域。在循环交变温度场作用下,粘接结构中由于温度疲劳导致的损伤会对航空航天器的稳定运行带来隐患。本项目针对粘接结构在温度疲劳载荷作用下其粘接界面和胶黏剂损伤开展非线性超声无损检测与评价。通过研究在温度疲劳作用下,粘接结构中胶黏剂与被粘接物之间界面微观局部脱粘,以及胶黏剂随着损伤发展表现出的非线性,得到超声波在损伤粘接结构中的传播规律以及超声波与粘接界面相互作用规律,建立声学参量与粘接质量特性、粘接强度之间的关系;通过对不同温度疲劳损伤状态下的粘接结构利用体波、导波(Lamb波)对进行非线性超声实验测量,建立超声声学参量与粘接结构温度疲劳加载过程之间的关系。本项目的最终目标是通过理论模型和实验测量结果中温度疲劳加载过程、超声声学参量以及粘接结构损伤之间的相互关系,建立对粘接结构的力学性能退化、损伤的起始和累积进行非线性超声无损检测的理论基础和技术实施方法。
中文关键词: 无损检测;非线性超声;温度疲劳损伤;粘接结构
英文摘要: Adhesive joints are widely used in industries such as aerospace engineering. Damage caused by the environmental thermal cycling will lead to the safety problem during operation for the adhesive joints. This project will conduct nonlinear ultrasonic testing and evaluation of damage for adhesive joints under environmental thermal cycling. By investigating the local micro disbonds of the adhesive interface between the adhesive layer and adherend structure, and the nonlinear mechanical behavior induced by environmental thermal cycling, process and mechanism for ultrasonic waves propagating in the adhesive joints will be studied; and the interaction effect between the ultrasonic wave and adhesive interface will be obtained. The relation between the acoustic parameters and the damage state will thus be established. Furthermore, with experimental researches based on nonlinear ultrasonic bulk waves and guided waves (Lamb waves), the relation between the acoustic parameters and thermal cycling process will also be fully interrogated. Based on the relation between the thermal cycling process, acoustic parameters and the damage of adhesive joints obtained theoretically and experimentally, the ultimate goal of this project is to get the theoretical details and application techniques for nonlinear ultrasonic waves used to evaluate the damage of adhesive joints under environmental thermal cycling non-destructively.
英文关键词: Non-destructive testing and evaluation;nonlinear ultrasonics;thermal cycling fatigue damage;adhesive joints