In this paper, we describe a conceptual design methodology to design distributed neural network architectures that can perform efficient inference within sensor networks with communication bandwidth constraints. The different sensor channels are distributed across multiple sensor devices, which have to exchange data over bandwidth-limited communication channels to solve, e.g., a classification task. Our design methodology starts from a user-defined centralized neural network and transforms it into a distributed architecture in which the channels are distributed over different nodes. The distributed network consists of two parallel branches of which the outputs are fused at the fusion center. The first branch collects classification results from local, node-specific classifiers while the second branch compresses each node's signal and then reconstructs the multi-channel time series for classification at the fusion center. We further improve bandwidth gains by dynamically activating the compression path when the local classifications do not suffice. We validate this method on a motor execution task in an emulated EEG sensor network and analyze the resulting bandwidth-accuracy trade-offs. Our experiments show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss (up to 2%) in classification accuracy compared to the centralized baseline on the demonstrated motor execution task. The proposed method offers a way to smoothly transform a centralized architecture to a distributed, bandwidth-efficient network amenable for low-power sensor networks. While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.


翻译:在本文中, 我们描述设计分布式神经网络结构的概念设计方法, 设计分布式神经网络结构, 可以在带有通信带宽限制的传感器网络内高效地进行推断。 不同的传感器频道分布于多个传感器装置, 这些装置必须交换带宽通信频道的数据才能解决, 例如分类任务。 我们的设计方法从用户定义的中央神经网络开始, 将其转换成分布式结构, 频道分布于不同的节点。 分布式网络由两个平行分支组成, 其产出在聚合中心被连接。 第一个分支收集本地的节点特定分类器的分类结果, 而第二分支压缩每个节点的信号, 然后在聚合中心重建多频道时间序列以进行分类。 当本地分类不足时, 我们通过动态激活压缩路径来进一步改进带宽的增加。 我们验证在模拟的 EEEG 传感器网络 服务器网络执行任务中的这一方法, 并分析由此产生的带宽度- 准确性交易。 我们的实验显示, 拟议的框架可以在最小的带宽度上进行分解, 应用每个节点的传感器的信号信号信号信号信号信号的信号信号序列序列序列, 将显示, 移动式的移动式网络的系统结构的精度到中央分析, 将显示到移动式的频率定位到移动式结构 。, 将显示到移动式的频率定位到移动式的频率到移动式的频率到移动到移动到移动式结构的精确到移动式的频率 。,,, 交付到移动式路路路路路路路段路段路段路段 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2022年11月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员