Shrinkage estimates of small domain parameters typically utilize a combination of a noisy "direct" estimate that only uses data from a specific small domain and a more stable regression estimate. When the regression model is misspecified, estimation performance for the noisier domains can suffer due to substantial shrinkage towards a poorly estimated regression surface. In this paper, we introduce a new class of robust, empirically-driven regression weights that target estimation of the small domain means under potential misspecification of the global regression model. Our regression weights are a convex combination of the model-based weights associated with the best linear unbiased predictor (BLUP) and those associated with the observed best predictor (OBP). The compromise parameter in this convex combination is found by minimizing a novel, unbiased estimate of the mean-squared prediction error for the small domain means, and we label the associated small domain estimates the "compromise best predictor", or CBP. Using a data-adaptive mixture for the regression weights enables the CBP to possess the robustness of the OBP while retaining the main advantages of the EBLUP whenever the regression model is correct. We demonstrate the use of the CBP in an application estimating gait speed in older adults.


翻译:微小域参数的缩小估计通常使用噪音的“ 直接” 估计组合,该估计只使用特定小域的数据和较稳定的回归估计。当回归模型定义错误时,由于向低估计回归表面的大幅缩小,对音响域的性能估计可能会受到影响。在本文中,我们引入了新型的稳健的、经验驱动的回归加权值,以在全球回归模型可能误差的情况下对小域值进行目标估计。我们的回归加权值是模型基重的组合,它与最佳线性预测仪(BLUP)和观察到的最佳预测仪(OBP)相关联。这一曲线组合的折中参数是通过尽量减少对小域值手段的中度预测错误的新的、不偏差估计而发现的。我们将相关的小域估计值标为“最精确的预测仪”或CBP。使用数据适应性混合值使CBP能够拥有以模型为基础的稳健性,同时保留EBLUP的主要优势,只要回归模型在更老的成人中进行估计。我们用CBP模型来证明。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Model Reduction via Dynamic Mode Decomposition
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员