Anomaly Detection (AD) on medical images enables a model to recognize any type of anomaly pattern without lesion-specific supervised learning. Data augmentation based methods construct pseudo-healthy images by "pasting" fake lesions on real healthy ones, and a network is trained to predict healthy images in a supervised manner. The lesion can be found by difference between the unhealthy input and pseudo-healthy output. However, using only manually designed fake lesions fail to approximate to irregular real lesions, hence limiting the model generalization. We assume by exploring the intrinsic data property within images, we can distinguish previously unseen lesions from healthy regions in an unhealthy image. In this study, we propose an Adaptive Fourier Space Compression (AFSC) module to distill healthy feature for AD. The compression of both magnitude and phase in frequency domain addresses the hyper intensity and diverse position of lesions. Experimental results on the BraTS and MS-SEG datasets demonstrate an AFSC baseline is able to produce promising detection results, and an AFSC module can be effectively embedded into existing AD methods.
翻译:医学图像上的异常检测(AD)使一个模型能够识别任何类型的异常模式,而没有受到特定损伤的监督学习。基于数据增强的方法通过在真正健康的图像上“涂抹”假的损伤来构建假健康图像,并且对网络进行培训,以便以有监督的方式预测健康图像。通过不健康输入和伪健康输出之间的差别可以发现损伤。然而,仅使用人工设计的假损伤无法接近非正常真实损伤,从而限制了模型的概括化。我们假设通过探索图像中的内在数据属性,我们可以在不健康图像中区分先前未见的损害和健康区域。在本研究中,我们建议采用适应性四层空间组合模块,为自动生成健康特征。频率范围内的大小和阶段压缩都针对损害的超强度和不同位置。BRATS和MS-SEG数据集的实验结果表明,AFSC基线能够产生有希望的检测结果,AFSC模块可以有效地嵌入现有的自动适应方法中。