Herbage mass yield and composition estimation is an important tool for dairy farmers to ensure an adequate supply of high quality herbage for grazing and subsequently milk production. By accurately estimating herbage mass and composition, targeted nitrogen fertiliser application strategies can be deployed to improve localised regions in a herbage field, effectively reducing the negative impacts of over-fertilization on biodiversity and the environment. In this context, deep learning algorithms offer a tempting alternative to the usual means of sward composition estimation, which involves the destructive process of cutting a sample from the herbage field and sorting by hand all plant species in the herbage. The process is labour intensive and time consuming and so not utilised by farmers. Deep learning has been successfully applied in this context on images collected by high-resolution cameras on the ground. Moving the deep learning solution to drone imaging, however, has the potential to further improve the herbage mass yield and composition estimation task by extending the ground-level estimation to the large surfaces occupied by fields/paddocks. Drone images come at the cost of lower resolution views of the fields taken from a high altitude and requires further herbage ground-truth collection from the large surfaces covered by drone images. This paper proposes to transfer knowledge learned on ground-level images to raw drone images in an unsupervised manner. To do so, we use unpaired image style translation to enhance the resolution of drone images by a factor of eight and modify them to appear closer to their ground-level counterparts. We then ... ~\url{www.github.com/PaulAlbert31/Clover_SSL}.
翻译:草原质量产量和成分估计是奶农的一项重要工具,以确保充分供应优质草本,供放牧和随后的牛奶生产使用。通过准确估计草本质量和成份,可以部署有针对性的氮肥化肥应用战略,改善草本地的本地化区域,有效减少过度肥化对生物多样性和环境的负面影响。在这方面,深层学习算法提供了一种诱人的替代方法,取代通常的自上而下的成分估计方法,这涉及从草本地切除样本,用手对草本地的所有植物品种进行分类的破坏性过程。这一过程是劳动密集和耗时的,农民没有利用。在此背景下,在高分辨率摄像头收集的图像中成功地应用了深入的学习方法。然而,通过将草本级的成品产量和成份估算任务扩大到田间/草本地的大型表面。Droone图像在从高空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空空