We consider two simple asynchronous opinion dynamics on arbitrary graphs where each node $u$ of the graph has an initial value $\xi_u(0)$. In the first process, the $NodeModel$, at each time step $t\ge 0$, a random node $u$ and a random sample of $k$ of its neighbours $v_1,v_2,\cdots,v_k$ are selected. Then $u$ updates its current value $\xi_u(t)$ to $\xi_u(t+1)=\alpha\xi_u(t)+\frac{(1-\alpha)}{k}\sum_{i=1}^k\xi_{v_i}(t)$, where $\alpha\in(0,1)$ and $k\ge1$ are parameters of the process. In the second process, the $EdgeModel$, at each step a random edge $(u,v)$ is selected. Node $u$ updates its value equivalently to the $NodeModel$ with $k=1$ and $v$ as the selected neighbour. For both processes the values of all nodes converge to the same value $F$, which is a random variable depending on the random choices made in each step. For the $NodeModel$ and regular graphs, and for the $EdgeModel$ and arbitrary graphs, the expectation of $F$ is the average of the initial values $\frac{1}{n}\sum_{u\in V}\xi_u(0)$. For the $NodeModel$ and non-regular graphs, the expectation of $F$ is the degree-weighted average of the initial values. Our results are two-fold. We consider the concentration of $F$ and show tight bounds on the variance of $F$ for regular graphs. We show that when the initial load does not depend on the number of nodes, the variance is negligible and the nodes are able to estimate the initial average of the node values. Interestingly, this variance does not depend on the graph structure. For the proof we introduce a duality between our processes and a process of two correlated random walks. We also analyse the convergence time for both models and for arbitrary graphs, showing bounds on the time $T_\varepsilon$ needed to make all node values `$\varepsilon$-close' to each other. Our bounds are asymptotically tight under some assumptions on the distribution of the starting values.
翻译:在任意图形中,我们考虑两个简单的非同步观点动态 。 在任意图形中, 每个节点 $xi_u( t) 的美元代表其当前值 $xi_xi_u( 0) 美元。 在第一个进程中, 每个步骤 $t\ ge 0美元, 一个随机节点 美元, 其邻居 $v_ 1,v_2,\cdots, 5_k美元 的随机抽样 。 在第二个过程中, $Egemodel$, 其当前值 $xxi_u( t+1) 美元至 $xxi( t) 美元。 在第一个过程中, 美元=xi_xxi( 1 - hall) 美元; 在第一个过程中, odemode=k_qual_ 美元 的美元, 美元 美元 的美元 美元 美元 美元, 其初始值是 美元 =xxxx 美元 的正数 。 在第一个步骤中, 显示 美元 美元 的正数 和直径 的平方值 显示 的 。