We consider two simple asynchronous opinion dynamics on arbitrary graphs where each node $u$ of the graph has an initial value $\xi_u(0)$. In the first process, the $NodeModel$, at each time step $t\ge 0$, a random node $u$ and a random sample of $k$ of its neighbours $v_1,v_2,\cdots,v_k$ are selected. Then $u$ updates its current value $\xi_u(t)$ to $\xi_u(t+1)=\alpha\xi_u(t)+\frac{(1-\alpha)}{k}\sum_{i=1}^k\xi_{v_i}(t)$, where $\alpha\in(0,1)$ and $k\ge1$ are parameters of the process. In the second process, the $EdgeModel$, at each step a random edge $(u,v)$ is selected. Node $u$ updates its value equivalently to the $NodeModel$ with $k=1$ and $v$ as the selected neighbour. For both processes the values of all nodes converge to the same value $F$, which is a random variable depending on the random choices made in each step. For the $NodeModel$ and regular graphs, and for the $EdgeModel$ and arbitrary graphs, the expectation of $F$ is the average of the initial values $\frac{1}{n}\sum_{u\in V}\xi_u(0)$. For the $NodeModel$ and non-regular graphs, the expectation of $F$ is the degree-weighted average of the initial values. Our results are two-fold. We consider the concentration of $F$ and show tight bounds on the variance of $F$ for regular graphs. We show that when the initial load does not depend on the number of nodes, the variance is negligible and the nodes are able to estimate the initial average of the node values. Interestingly, this variance does not depend on the graph structure. For the proof we introduce a duality between our processes and a process of two correlated random walks. We also analyse the convergence time for both models and for arbitrary graphs, showing bounds on the time $T_\varepsilon$ needed to make all node values `$\varepsilon$-close' to each other. Our bounds are asymptotically tight under some assumptions on the distribution of the starting values.


翻译:在任意图形中,我们考虑两个简单的非同步观点动态 。 在任意图形中, 每个节点 $xi_u( t) 的美元代表其当前值 $xi_xi_u( 0) 美元。 在第一个进程中, 每个步骤 $t\ ge 0美元, 一个随机节点 美元, 其邻居 $v_ 1,v_2,\cdots, 5_k美元 的随机抽样 。 在第二个过程中, $Egemodel$, 其当前值 $xxi_u( t+1) 美元至 $xxi( t) 美元。 在第一个过程中, 美元=xi_xxi( 1 - hall) 美元; 在第一个过程中, odemode=k_qual_ 美元 的美元, 美元 美元 的美元 美元 美元 美元, 其初始值是 美元 =xxxx 美元 的正数 。 在第一个步骤中, 显示 美元 美元 的正数 和直径 的平方值 显示 的 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员