We further develop the paraconsistent G\"{o}del modal logic. In this paper, we consider its version endowed with Kripke semantics on $[0,1]$-valued frames with two fuzzy relations $R^+$ and $R^-$ (degrees of trust in assertions and denials) and two valuations $v_1$ and $v_2$ (support of truth and support of falsity) linked with a De Morgan negation $\neg$. We demonstrate that it \emph{does not} extend G\"{o}del modal logic and that $\Box$ and $\lozenge$ are not interdefinable. We also show that several important classes of frames are $\birelKGsquare$ definable (in particular, crisp, mono-relational, and finitely branching). For $\birelKGsquare$ over finitely branching frames, we create a sound and complete constraint tableaux calculus and a decision procedure based upon it. Using the decision procedure we show that $\birelKGsquare$ satisfiability and validity are in PSPACE.


翻译:双关系框架上的无矛盾哥德尔模态逻辑。本文进一步发展了无矛盾哥德尔模态逻辑。在本文中,我们考虑带有Kripke语义的版本,该语义应用于具有两个模糊关系$R^+$和$R^-$(断言的真实程度和否定的真实程度)以及两个赋值$v_1$和$v_2$(真实性的支持和虚假性支持)的$[0,1]$ 值框架,并与De Morgan否定 $\neg$ 相关联。我们证明了它\emph{不}扩展哥德尔模态逻辑,且$\Box$和$\lozenge$不能相互定义。我们还展示了几个重要的框架类别是$\birelKGsquare$可定义的(特别是,脆性,单关系和有限分支)。对于$finitely$ $branching$框架上的$\birelKGsquare$,我们创建了一个声音和完整的约束表格演算和一个基于它的决策过程。使用决策程序,我们表明$\birelKGsquare$的可满足性和有效性都在PSPACE内。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员