In this paper we revisit an approach pioneered by Auchmuty to approximate solutions of the Laplace- Robin boundary value problem. We demonstrate the efficacy of this approach on a large class of non-tensorial domains, in contrast with other spectral approaches for such problems. We establish a spectral approximation theorem showing an exponential fast numerical evaluation with regards to the number of Steklov eigenfunctions used, for smooth domains and smooth boundary data. A polynomial fast numerical evaluation is observed for either non-smooth domains or non-smooth boundary data. We additionally prove a new result on the regularity of the Steklov eigenfunctions, depending on the regularity of the domain boundary. We describe three numerical methods to compute Steklov eigenfunctions.
翻译:在本文中,我们重新审视了Auchmuty为大致解决Laplace-Robin边界价值问题而先行提出的一种方法。我们展示了这种方法在一大批非惯性域上的效力,而与其他处理此类问题的光谱方法不同。我们建立了一个光谱近似理论,显示对Steklov元件数的指数性快速数字评价,用于平滑域和光滑边界数据。对非悬浮域或非悬浮边界数据都进行了多数值快速评价。我们进一步证明,根据域边界的规律性, Steklov 元件的规律性产生了新的结果。我们描述了用于计算Steklov 元元的三种数字方法。