项目名称: 非线性椭圆方程的可解性与临界参数问题
项目编号: No.10871187
项目类型: 面上项目
立项/批准年度: 2009
项目学科: 电工技术
项目作者: 宣本金
作者单位: 中国科学技术大学
项目金额: 23万元
中文摘要: 本项目深入细致地研究了来源数学物理和几何分析等实际问题中的偏微分方程解的存在性以及凹凸等性质。我们在带有临界指数和奇异系数的拟线性方程、Boltzmann方程的非线性边界层、各类几何曲面及方程解水平集曲率估计等方面,取得了较为深入的研究成果;这些研究不仅解决了一批数学物理和几何分析中的实际问题,研究中所采用的思想和方法以及所得到的研究成果,可以用来研究类似问题,这为后续的研究奠定了基础,也指明了方向,更是提供了工具。
中文关键词: 临界指数;奇异系数;非线性边界层;水平集;曲率估计
英文摘要: In this program, we deeply studied those partial differential equations, which arose in Mathematical Physics and Geometry Analysis. We have got not only the solvability of those PDEs, but also some properties of the solutions, such as convexity. More precisely,we studied the quasilinear equations with singular coefficients and critical exponents, nonlinear boundary layer of Boltzmann equations, and curvature estimates of the levels sets of some special surfaces or solutions of prescribed curvature equations. These results solves the problems from Mathematical Physics and Geometry Analysis. Those ideas and mehtods adopted in our research can be adapted to other similar problems.
英文关键词: critical exponents; singular coefficients;nonlinear boundary layer;level sets;curvature estimates