Spatially inhomogeneous functions, which may be smooth in some regions and rough in other regions, are modelled naturally in a Bayesian manner using so-called Besov priors which are given by random wavelet expansions with Laplace-distributed coefficients. This paper studies theoretical guarantees for such prior measures - specifically, we examine their frequentist posterior contraction rates in the setting of non-linear inverse problems with Gaussian white noise. Our results are first derived under a general local Lipschitz assumption on the forward map. We then verify the assumption for two non-linear inverse problems arising from elliptic partial differential equations, the Darcy flow model from geophysics as well as a model for the Schr\"odinger equation appearing in tomography. In the course of the proofs, we also obtain novel concentration inequalities for penalized least squares estimators with $\ell^1$ wavelet penalty, which have a natural interpretation as maximum a posteriori (MAP) estimators. The true parameter is assumed to belong to some spatially inhomogeneous Besov class $B^{\alpha}_{11}$, $\alpha>0$. In a setting with direct observations, we complement these upper bounds with a lower bound on the rate of contraction for arbitrary Gaussian priors. An immediate consequence of our results is that while Laplace priors can achieve minimax-optimal rates over $B^{\alpha}_{11}$-classes, Gaussian priors are limited to a (by a polynomial factor) slower contraction rate. This gives information-theoretical justification for the intuition that Laplace priors are more compatible with $\ell^1$ regularity structure in the underlying parameter.
翻译:空间不均匀的功能, 在某些区域可能是平滑的, 在其它区域可能是粗糙的, 自然地以 Bayesian 方式以所谓的 Besov 前端为模型, 由随机的波盘扩张和 Laplace 分布系数来提供。 本文研究这些先前措施的理论保障 - 具体地说, 我们检查它们常态的后部收缩率, 设置高斯白噪音的非线性问题。 我们的结果首先在远方地图上一个局部的Lipschitz假设下得出。 我们然后核查两个非线性反面问题的假设, 由椭圆部分差异方程式、 来自地球物理的达西流模型以及Schr\“ oderginger 等方程式的模型 。 在证据过程中, 我们还为受惩罚的最平方的Laell1美元- 1美元波点惩罚者, 其自然解释为最高后方根值( MAP) 。 假设真实的参数属于某些空间- 美元偏差部分的偏差偏差偏差偏差偏差值, 等正正正正正值模型结构结构结构结构结构结构结构, 显示这些前的正值前端偏差率值的上, 直偏差值的偏差值是先定的直值。