We study a class of nonlinear eigenvalue problems of Schr\"{o}dinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined $hp$ discontinuous Galerkin (dG) method. We show that, for weighted analytic potentials and for up-to-quartic polynomial nonlinearities, the eigenfunctions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined $hp$ space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. We conclude with a series of numerical tests to validate the theoretical results.
翻译:我们研究的是Schr\"{o}dinger 类的非线性电子价值问题, 其潜力在一组点上是单数的。 这些问题在物理和化学中广泛存在, 其分析既具有理论意义, 也具有实际意义。 特别是, 我们研究所考虑的操作者机能的规律性, 我们建议和分析解决方案的近似值, 方法是通过同位素精细的 $hp 终止 Galerkin (dG) 方法。 我们显示, 对于加权分析潜力和最高至赤道多边非线性, 机能属于分析型的非同质加权索博列夫空间。 我们还证明, 对 dG 有限元素方法的误差进行初步估计是半最佳的; 当使用同位素精细的 $hp$ 空间时, 数字解决方案显示与指数率一致到准确的机能。 我们最后用一系列数字测试来验证理论结果。