Robots operating in human-centered environments, such as retail stores, restaurants, and households, are often required to distinguish between similar objects in different contexts with a high degree of accuracy. However, fine-grained object recognition remains a challenge in robotics due to the high intra-category and low inter-category dissimilarities. In addition, the limited number of fine-grained 3D datasets poses a significant problem in addressing this issue effectively. In this paper, we propose a hybrid multi-modal Vision Transformer (ViT) and Convolutional Neural Networks (CNN) approach to improve the performance of fine-grained visual classification (FGVC). To address the shortage of FGVC 3D datasets, we generated two synthetic datasets. The first dataset consists of 20 categories related to restaurants with a total of 100 instances, while the second dataset contains 120 shoe instances. Our approach was evaluated on both datasets, and the results indicate that it outperforms both CNN-only and ViT-only baselines, achieving a recognition accuracy of 94.50 % and 93.51 % on the restaurant and shoe datasets, respectively. Additionally, we have made our FGVC RGB-D datasets available to the research community to enable further experimentation and advancement. Furthermore, we successfully integrated our proposed method with a robot framework and demonstrated its potential as a fine-grained perception tool in both simulated and real-world robotic scenarios.


翻译:在零售商店、餐馆和家庭等以人为中心的环境中运作的机器人往往需要在不同背景下对类似物体进行区分,并具有高度准确性。然而,由于类别内和类别间差异性差高和低,微微颗粒天体识别在机器人方面仍是一个挑战。此外,微粒的3D数据集数量有限,对有效解决这一问题造成了严重问题。在本文件中,我们提议采用混合多模式愿景变异器(VIT)和动态神经网络(CNN)方法来改进精细视觉分类(FGVC)的性能。为了解决FGVC 3D数据集短缺的问题,我们生成了两个合成数据集。第一个数据集由20个类别组成,涉及餐饮业,总共100个,而第二个数据集则包含120个鞋例。我们在这两个数据集上采用的方法得到了评估,并且拟议的结果表明,它超越了CNN和ViT专用基线,从而实现了对94.5和93.51%的精准度图像的精确度,在餐厅和鞋类实验中分别实现了我们所展示的R51%和9-D工具。</s>

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
13+阅读 · 2022年10月27日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员