Cardiac image segmentation is a critical process for generating personalized models of the heart and for quantifying cardiac performance parameters. Several convolutional neural network (CNN) architectures have been proposed to segment the heart chambers from cardiac cine MR images. Here we propose a multi-task learning (MTL)-based regularization framework for cardiac MR image segmentation. The network is trained to perform the main task of semantic segmentation, along with a simultaneous, auxiliary task of pixel-wise distance map regression. The proposed distance map regularizer is a decoder network added to the bottleneck layer of an existing CNN architecture, facilitating the network to learn robust global features. The regularizer block is removed after training, so that the original number of network parameters does not change. We show that the proposed regularization method improves both binary and multi-class segmentation performance over the corresponding state-of-the-art CNN architectures on two publicly available cardiac cine MRI datasets, obtaining average dice coefficient of 0.84$\pm$0.03 and 0.91$\pm$0.04, respectively. Furthermore, we also demonstrate improved generalization performance of the distance map regularized network on cross-dataset segmentation, showing as much as 41% improvement in average Dice coefficient from 0.57$\pm$0.28 to 0.80$\pm$0.13.
翻译:心心形图断裂是一个关键过程,可以生成心脏个性化模型和量化心脏性能参数。 已经提议了数个进化神经网络(CNN)架构, 将心脏室从心脏中分离出来, 以心电图MR 图像断裂。 我们在这里提议一个基于多任务学习( MTL) 的规范化框架, 用于心脏MR 图像分割。 网络受过培训, 以完成语解分离的主要任务, 以及同时、 辅助的像素远距地图回归任务。 拟议的远距地图正解密器是一个解密器网络, 添加到CNN现有结构的瓶颈层中, 便利网络学习强大的全球特征。 常规化器块在培训后被删除, 网络参数的最初数目不会改变。 我们显示, 拟议的规范化方法可以改善相应的二进制和多级分层分解功能, 以及两个公开提供的像素MRI 数据集, 13, 获得平均 dice 0.84\ pm 0.03 和 0.91\ 0.04 美元。 此外, 我们还展示了正常的平段平段平平平平平平平平平平平平平平平平平平平平平平的平平平平平平的平平平平平平平平的平的平平平平平的平平平平平平平平平的平的平的平平平平平平平平平的平。