Medical image segmentation is a primary task in many applications, and the accuracy of the segmentation is a necessity. Recently, many deep learning networks derived from U-Net have been extensively used and have achieved notable results. To further improve and refine the performance of U-Net, parallel decoders along with mask prediction decoder have been carried out and have shown significant improvement with additional advantages. In our work, we utilize the advantages of using a combination of contour and distance map as regularizers. In turn, we propose a novel architecture Psi-Net with a single encoder and three parallel decoders, one decoder to learn the mask and other two to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and boundary. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.
翻译:医学图像分割是许多应用中的一项主要任务,而分离的准确性也是必需的。最近,从 U-Net 获得的许多深层学习网络已被广泛使用,并取得了显著的成果。为了进一步改进和完善U-Net的功能,还进行了平行解码器以及掩罩预测解码器,并取得了其他优势。我们在工作中利用将等距和距离地图相结合作为规范器的好处。我们又提议了一个具有单一编码器和三个平行解码器的新结构Psi-Net,一个解码器学习掩码,其他两个解码器学习对等距探测和远程地图估计的辅助任务。这些辅助任务的学习有助于捕捉到形状和边界。我们还提议了拟议架构的新联合损失功能。损失功能包括将负概率和中位方差错误损失的加权组合。我们使用两个公开的数据集:(1) Origa 数据集,用于光学杯和盘分离任务,一个解码元件,一个解码器,另一个解码器解码器,另一个解码器解码器,用来学习掩码器探测和远程地图估计的辅助任务。这些辅助任务有助于捕捉取形状和界限。我们模型的形状和边界部分。我们还进行了广泛的实验,用以评估我们的模型的模型的模型的模型。我们用了我们的模型的模型。我们用了我们的模型的模型,我们用了我们的模型的模型,我们用了我们的模型,我们进行了测量线路路段段。