Parameter-Efficient transfer learning with Adapters have been studied in Natural Language Processing (NLP) as an alternative to full fine-tuning. Adapters are memory-efficient and scale well with downstream tasks by training small bottle-neck layers added between transformer layers while keeping the large pretrained language model (PLMs) frozen. In spite of showing promising results in NLP, these methods are under-explored in Information Retrieval. While previous studies have only experimented with dense retriever or in a cross lingual retrieval scenario, in this paper we aim to complete the picture on the use of adapters in IR. First, we study adapters for SPLADE, a sparse retriever, for which adapters not only retain the efficiency and effectiveness otherwise achieved by finetuning, but are memory-efficient and orders of magnitude lighter to train. We observe that Adapters-SPLADE not only optimizes just 2\% of training parameters, but outperforms fully fine-tuned counterpart and existing parameter-efficient dense IR models on IR benchmark datasets. Secondly, we address domain adaptation of neural retrieval thanks to adapters on cross-domain BEIR datasets and TripClick. Finally, we also consider knowledge sharing between rerankers and first stage rankers. Overall, our study complete the examination of adapters for neural IR
翻译:基于 Adapter 的参数高效稀疏检索器和重新排序器
Adapter 的迁移学习在自然语言处理(NLP)中已被研究作为完全微调的替代方案。适配器是内存高效的,并通过训练添加到变换器层之间的小瓶颈层而保持大型预先训练的语言模型(PLMs)冻结,因此可以很好地扩展。尽管在 NLP 中表现出有望的结果,但在信息检索领域中,这些方法尚未得到充分的研究。先前的研究只研究了密集检索器或跨语言检索场景,本文旨在完整地阐述 Adapter 在 IR 中的应用。首先,我们研究了适用于 SPLADE 的适配器,适配器不仅保留了通过微调实现的效率和有效性,而且在训练中所需的内存效率和数量级上比微调轻得多。我们观察到 Adapters-SPLADE 仅优化了 2% 的训练参数,但在 IR 基准数据集上胜过完全微调的对应方法和现有的参数高效密集 IR 模型。其次,我们通过 BEIR 跨领域数据集和 TripClick 来解决神经检索的领域适应问题。最后,我们还考虑将重新排序器和第一阶段排名共享的知识。总之,我们的研究完善了在神经 IR 中使用 Adapter 的研究。