In this paper we solve the Boltzmann transport equation using AI libraries. The reason why this is attractive is because it enables one to use the highly optimised software within AI libraries, enabling one to run on different computer architectures and enables one to tap into the vast quantity of community based software that has been developed for AI and ML applications e.g. mixed arithmetic precision or model parallelism. Here we take the first steps towards developing this approach for the Boltzmann transport equation and develop the necessary methods in order to do that effectively. This includes: 1) A space-angle multigrid solution method that can extract the level of parallelism necessary to run efficiently on GPUs or new AI computers. 2) A new Convolutional Finite Element Method (ConvFEM) that greatly simplifies the implementation of high order finite elements (quadratic to quintic, say). 3) A new non-linear Petrov-Galerkin method that introduces dissipation anisotropically.
翻译:在本文中,我们用AI图书馆解决了Boltzmann运输等式。 之所以有吸引力的原因是,它使人们能够使用AI图书馆中高度优化的软件,使一个人能够在不同的计算机结构上运行,并能够利用为AI和ML应用开发的大量基于社区的软件,例如混合计算精度或模型平行。 我们在这里采取初步步骤,为Boltzmann运输等式制定这一方法,并开发必要的方法,以便有效做到这一点。 这包括:(1) 一种空间角多格解决办法,可以提取高效运行GPUs或新的AI计算机所需的平行水平。(2) 一种新的革命性精度元素法(ConvFEM),它大大简化了高定序元素(quratic to quintic)的实施。(3) 一种新的非线性Petrov-Galerkin方法,它引入了分解非节制性。