Large Language Models (LLMs) have been reported to have strong performance on natural language processing tasks. However, performance metrics such as accuracy do not measure the quality of the model in terms of its ability to robustly represent complex linguistic structure. In this paper, focusing on the ability of language models to represent syntax, we propose a framework to assess the consistency and robustness of linguistic representations. To this end, we introduce measures of robustness of neural network models that leverage recent advances in extracting linguistic constructs from LLMs via probing tasks, i.e., simple tasks used to extract meaningful information about a single facet of a language model, such as syntax reconstruction and root identification. Empirically, we study the performance of four LLMs across six different corpora on the proposed robustness measures by analysing their performance and robustness with respect to syntax-preserving perturbations. We provide evidence that context-free representation (e.g., GloVe) are in some cases competitive with context-dependent representations from modern LLMs (e.g., BERT), yet equally brittle to syntax-preserving perturbations. Our key observation is that emergent syntactic representations in neural networks are brittle. We make the code, trained models and logs available to the community as a contribution to the debate about the capabilities of LLMs.


翻译:神经网络中新兴的语言结构是脆弱的 摘要:据报道,大型语言模型在自然语言处理任务中表现出强大的性能。然而,准确度等性能指标并不衡量模型在代表复杂语言结构方面的能力是否具有稳健性。因此,本文提出了一个框架来评估语言模型的表征一致性和稳定性,以语法表示能力为焦点。为此,我们在最近的提取语言模型中的有意义的信息和语言结构方面取得的进展的基础上,引入了利用探测任务的神经网络模型的稳健性度量,即用于从语言模型中提取单个方面有意义信息的简单任务,例如句法重构和根识别。经验性地,我们通过分析四种LLM(Large Language Models)对六种不同语料库的表现和稳健性,以及语法保持扰动,研究了提出的稳健性度量的性能。我们提供证据表明,上下文无关表示(例如GloVe)在某些情况下与现代LLM(例如BERT)的上下文相关表示相当竞争,但同样脆弱于语法保持扰动。我们的主要观察是,神经网络中的新兴句法表示是脆弱的。我们将代码,训练模型和日志提供给社区,作为对LLM能力讨论的贡献。

0
下载
关闭预览

相关内容

【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
64+阅读 · 2020年7月12日
BERT进展2019四篇必读论文
专知会员服务
66+阅读 · 2020年1月2日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
22+阅读 · 2019年11月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员