Models need to be trained with privacy-preserving learning algorithms to prevent leakage of possibly sensitive information contained in their training data. However, canonical algorithms like differentially private stochastic gradient descent (DP-SGD) do not benefit from model scale in the same way as non-private learning. This manifests itself in the form of unappealing tradeoffs between privacy and utility (accuracy) when using DP-SGD on complex tasks. To remediate this tension, a paradigm is emerging: fine-tuning with differential privacy from a model pretrained on public (i.e., non-sensitive) training data. In this work, we identify an oversight of existing approaches for differentially private fine tuning. They do not tailor the fine-tuning approach to the specifics of learning with privacy. Our main result is to show how carefully selecting the layers being fine-tuned in the pretrained neural network allows us to establish new state-of-the-art tradeoffs between privacy and accuracy. For instance, we achieve 77.9% accuracy for $(\varepsilon, \delta)=(2, 10^{-5})$ on CIFAR-100 for a model pretrained on ImageNet. Our work calls for additional hyperparameter search to configure the differentially private fine-tuning procedure itself.


翻译:模型需要接受隐私保护学习算法的培训,以防止其培训数据中可能包含的敏感信息泄漏。 但是,像差异性私人随机梯度梯度下降(DP-SGD)这样的典型算法不能像非私人学习一样从模型规模中受益。 这表现在使用DP-SGD执行复杂任务时,隐私和公用事业(准确性)之间的不上诉取舍。 为了补救这种紧张关系,正在出现一种模式:对公共(例如,不敏感)培训数据中预先培训的模型的隐私差异进行微调。在这项工作中,我们确定了对差异性私人微调的现有方法的监督。它们并没有像非私人学习一样,根据隐私学习的具体情况调整微调方法。我们的主要结果是显示如何仔细选择在预先培训的神经网络中进行微调的层,从而使我们能够在隐私和准确性之间建立新的状态-艺术取舍。例如,我们为 $( varepslon, delta) 培训的模型(2, 10\-5) 实现77.9%的准确性私隐私私私隐私调。 智能模型的搜索程序。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员