The use of coarse-grained layouts for controllable synthesis of complex scene images via deep generative models has recently gained popularity. However, results of current approaches still fall short of their promise of high-resolution synthesis. We hypothesize that this is mostly due to the highly engineered nature of these approaches which often rely on auxiliary losses and intermediate steps such as mask generators. In this note, we present an orthogonal approach to this task, where the generative model is based on pure likelihood training without additional objectives. To do so, we first optimize a powerful compression model with adversarial training which learns to reconstruct its inputs via a discrete latent bottleneck and thereby effectively strips the latent representation of high-frequency details such as texture. Subsequently, we train an autoregressive transformer model to learn the distribution of the discrete image representations conditioned on a tokenized version of the layouts. Our experiments show that the resulting system is able to synthesize high-quality images consistent with the given layouts. In particular, we improve the state-of-the-art FID score on COCO-Stuff and on Visual Genome by up to 19% and 53% and demonstrate the synthesis of images up to 512 x 512 px on COCO and Open Images.


翻译:通过深基因模型对复杂场景图像进行可控合成的粗粒布局最近越来越受欢迎。然而,目前方法的结果仍然没有达到高分辨率合成的预期值。我们假设,这主要是因为这些方法的高度工程性,往往依赖辅助性损失和中间步骤,如遮罩生成器。在本说明中,我们对这一任务提出了一个正统方法,即基因模型以纯可能性培训为基础,而没有附加目标。为了做到这一点,我们首先优化一个强大的压缩模型,进行对抗性培训,学习通过离散潜伏瓶颈重建其投入,从而有效地剥除高分辨率细节的潜在代表性,如纹理。随后,我们培训一个自动反向变异变异变异器模型,以学习离散图像的分布,条件是有象征性的布局版本。我们的实验表明,由此产生的系统能够按照给定的布局综合高质量的图像。特别是,我们改进了COCO-Stuff和Vision Group5-%和Opencial Group 5-%和Ocal 5和5Ogrois 5和5%的合成和5-COgro化图。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月13日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Bridging Knowledge Graphs to Generate Scene Graphs
Arxiv
5+阅读 · 2020年1月7日
Arxiv
4+阅读 · 2019年8月7日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月13日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员