While the researches on single image super-resolution (SISR), especially equipped with deep neural networks (DNNs), have achieved tremendous successes recently, they still suffer from two major limitations. Firstly, the real image degradation is usually unknown and highly variant from one to another, making it extremely hard to train a single model to handle the general SISR task. Secondly, most of current methods mainly focus on the downsampling process of the degradation, but ignore or underestimate the inevitable noise contamination. For example, the commonly-used independent and identically distributed (i.i.d.) Gaussian noise distribution always largely deviates from the real image noise (e.g., camera sensor noise), which limits their performance in real scenarios. To address these issues, this paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations. Instead of the traditional i.i.d. Gaussian noise assumption, a novel patch-based non-i.i.d. noise modeling method is proposed to fit the complex real noise. Besides, a deep generator parameterized by a DNN is used to map the latent variable to the high-resolution image, and the conventional hyper-Laplacian prior is also elaborately embedded into such generator to further constrain the image gradients. Finally, a Monte Carlo EM algorithm is designed to solve our model, which provides a general inference framework to update the image generator both w.r.t. the latent variable and the network parameters. Comprehensive experiments demonstrate that the proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.


翻译:虽然对单一图像超分辨率(SISR)的研究,特别是配备了深层神经网络(DNNSs),最近取得了巨大的成功,但它们仍然受到两大限制。首先,真实图像的降解通常不为人知,而且高度变异,因此很难用单一模型来处理一般的SISSR任务。第二,目前大多数方法主要侧重于对降解的降格过程进行下取样,但忽视或低估不可避免的噪音污染。例如,通常使用的、独立和同样分布的(i.d.)高斯的噪音分布总是与真实图像噪音(例如,全面参数,相机传感器传感器的噪音)大不相径庭,这限制了真实图像的性能。为了解决这些问题,本文提出了一种基于模型的模型化小巧且不易变速(i.d.),高调的频率分布总是与真实噪音(例如,低度的图像(如,如,低度图像)相比,低度的当前速度(例如,低度A.)传感器传感器的变速传感器的变速参数也用来处理一般的SISL任务,而最后的变压的变压的图像。 高的变压的变压的变压的图像是一种普通的变压方法,这种变式的变压的变压的变压的变压的变压的变压的变压的变压的变压的图像, 向的变压的变压的变式的变压的图像的变的变压的变压的图像的变式的变的变的变式的变式的变式的变式的变的变式的变式的变式的变式的变式的变制的变式的变式的变式的变制的图像,它的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式S的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员