Imitation is a simple behavior which uses successful actions of others in order to handle one's tasks. Because success of imitation generally depends on whether profit of an imitating agent coincides with those of other agents or not, game theory is suitable for specifying situations where imitation can be successful. One of the concepts describing successfulness of imitation in repeated two-player symmetric games is unbeatability. For infinitely repeated two-player symmetric games, a necessary and sufficient condition for some imitation strategy to be unbeatable was specified. However, situations where imitation can be unbeatable in multi-player games are still not clear. In order to analyze successfulness of imitation in multi-player situations, here we introduce a class of totally symmetric games called unexploitable games, which is a natural extension of two-player symmetric games without exploitation cycles. We then prove that, for infinitely repeated unexploitable games, there exist unbeatable imitation strategies. Furthermore, we also prove that, for infinitely repeated non-trivial unexploitable games, there exist unbeatable zero-determinant strategies, which unilaterally enforce some relationships on payoffs of players. These claims are demonstrated in the public goods game, which is the simplest unexploitable game. These results show that there are situations where imitation can be unbeatable even in multi-player games.


翻译:模拟是一种简单的行为,它使用他人的成功行动来完成某人的任务。由于模仿的成功一般取决于模仿剂的利润是否与其他代理人的利润相符,因此游戏理论适合具体指明模仿成功的情形。描述在重复的两玩者对称游戏中模仿成功的概念之一是不可打赢的。对于无限重复的双玩对称游戏来说,一个必要和充分的条件可以让某些模仿策略无法打赢。然而,由于模拟游戏在多玩游戏中可能无法打赢的情况仍然不清楚。为了分析多玩者情况下模仿成功与否,我们在这里引入了一套完全对称游戏无法开发的游戏,这是两玩者对称游戏的对称游戏的自然延伸,而没有开发周期。我们随后证明,对于无限重复的无法开发的游戏来说,存在着无法打赢的模拟策略。此外,我们还证明,对于无限重复的、不可打赢的游戏游戏游戏来说,甚至无法打赢赢的游戏仍然很不清楚。为了分析在多玩游戏中成功,这些游戏的游戏的游戏是无法打赢赢的游戏,这些游戏的游戏的游戏的游戏的游戏是单方面的游戏结果。 这些游戏的游戏的游戏是展示的游戏的游戏的游戏,这些游戏的游戏的游戏的游戏的游戏的游戏的游戏,它们是展示,它们可以被展示的。这些是展示的。这些游戏的,这些游戏的游戏的游戏的游戏的游戏的简单的游戏的游戏的游戏的游戏。这些游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏的游戏是用来。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月24日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员