This paper concerns the central issues of model robustness and sample efficiency in offline reinforcement learning (RL), which aims to learn to perform decision making from history data without active exploration. Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy -- with as few samples as possible -- that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset. We consider a distributionally robust formulation of offline RL, focusing on tabular robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings. To combat with sample scarcity, a model-based algorithm that combines distributionally robust value iteration with the principle of pessimism in the face of uncertainty is proposed, by penalizing the robust value estimates with a carefully designed data-driven penalty term. Under a mild and tailored assumption of the history dataset that measures distribution shift without requiring full coverage of the state-action space, we establish the finite-sample complexity of the proposed algorithm, and further show it is almost unimprovable in light of a nearly-matching information-theoretic lower bound up to a polynomial factor of the (effective) horizon length. To the best our knowledge, this provides the first provably near-optimal robust offline RL algorithm that learns under model uncertainty and partial coverage.


翻译:本文涉及离线强化学习中的模型稳健性和抽样效率等核心问题,目的是学习如何从历史数据中做出决策,而不进行积极勘探。由于环境的不确定性和差异性,至关重要的是要学习一个稳健的政策 -- -- 尽可能少的样本 -- -- 即使部署的环境偏离了用于收集历史数据集的名义环境,该政策也表现良好。我们认为,对离线RL进行分布式强的配方式配方,重点是表格式稳健的Markov决策程序,其不确定性是由Kullback-Leibiler在限定和无限正方位设置上的差异所设定的。要克服抽样稀缺,建议采用基于模型的算法,将分布稳健的数值反复计算与面对不确定性的悲观原则结合起来,用精心设计的数据驱动的罚款术语对稳健的估值进行惩罚。根据对历史数据集的简单和定制的假设,即测量模式的分布变化不需要完全覆盖州-行动空间,我们建立了拟议的算法的有限缩略性复杂度,并进一步表明,在接近稳健度的缩缩度范围内,这是我们最接近最难的学习因素。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
53+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员