Experience of live video streaming can be improved if the video uploader has more accurate knowledge about the future available bandwidth. Because with such knowledge, one is able to know what sizes should he encode the frames to be in an ever-changing network. Researchers have developed some algorithms to predict throughputs in the literature, from where some are simple hence practical. However, limitation remains as most current bandwidth prediction methods are predicting a value, or a point estimate, of future bandwidth. Because in many practical scenarios, it is desirable to control the performance to some targets, e.g., video delivery rate over a given target percentage, which cannot be easily achieved via most current methods. In this work, we propose the use of probability distribution to model future bandwidth. Specifically, we model future bandwidth using past data transfer measurements and then derive a probability model for use in the application. This changes the selection of parameters in application into a probabilistic manner such that given target performance can be achieved in the long run. Inside our model, we use the conditional-probability method to correlate past and future bandwidth and hence further improve the estimating performance.
翻译:如果视频上传者对未来可用带宽有更准确的了解,则现场视频流流的经验是可以改进的。 因为有了这种知识,人们就能够知道他在不断变化的网络中编码框架的大小。 研究人员已经开发了一些算法来预测文献中的传输量, 其中一些数据简单, 因而很实用。 然而, 限制仍然存在, 因为大多数当前的带宽预测方法预测未来带宽的价值或点估计值。 因为在许多实际情景中, 有必要控制某些目标的性能, 例如, 特定目标百分比的视频交付率, 而这无法通过大多数当前方法轻易实现。 在这项工作中, 我们提议使用概率分布来模拟未来的带宽。 具体地说, 我们用过去的数据传输测量来模拟未来的带宽, 然后得出一个应用的概率模型。 这将应用参数的选择改变成一种概率性的方法, 以便长期实现目标性能。 在模型中, 我们使用有条件的概率方法来将过去和未来的带宽度联系起来, 从而进一步改进估计性能。