Clustering of nodes in Bayesian Networks (BNs) and related graphical models such as Dynamic BNs (DBNs) has been demonstrated to enhance computational efficiency and improve model learning. Typically, it involves the partitioning of the underlying Directed Acyclic Graph (DAG) into cliques, or optimising for some cost or criteria. Computational cost is important since BN and DBN inference, such as estimating marginal distributions given evidence or updating model parameters, is NP-hard. The challenge is exacerbated by cost dependency, where inference outcomes and hence clustering cost depends on both nodes within a cluster and the mapping of clusters that are connected by at least one arc. We propose an algorithm called Dependent Cluster MAPping (DCMAP) which is shown analytically, given an arbitrarily defined, positive cost function, to find all optimal cluster mappings, and do so with no more iterations than an equally informed algorithm. DCMAP is demonstrated on a complex systems seagrass DBN, which has 25 nodes per time-slice, and captures biological, ecological and environmental dynamics and their interactions to predict the impact of dredging stressors on resilience and their cumulative effects over time. The algorithm is employed to find clusters to optimise the computational efficiency of inferring marginal distributions given evidence. For the 25 (one time-slice) and 50-node (two time-slices) DBN, the search space size was $9.91\times10^9$ and $1.51\times10^{21}$ possible cluster mappings, respectively, but the first optimal solution was found at iteration number 856 (95\% CI 852,866), and 1569 (1566,1581) with a cost that was 4\% and 0.2\% of the naive heuristic cost, respectively. Through optimal clustering, DCMAP opens up opportunities for further research beyond improving computational efficiency, such as using clustering to minimise entropy in BN learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员