StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
翻译:StyleGAN 在 2D 面部重建与语义编辑方面取得了巨大进展。 虽然关于将 2D StyleGAN 扩展为 3D 面部的研究已经出现, 但相应的 3D GAN 配置框架仍然缺失, 限制了 3D 面部重建与语义编辑的应用 。 在本文中, 我们研究3D GAN 的 3D 配置挑战性问题, 预言潜伏代码在3D 面部图像中可以忠实恢复 3D 形状和详细纹理。 问题存在错误: 形状和纹理的不可计数构成可以变成当前图像。 此外, 由于全球潜值代码能力有限, 2D 转换方法无法在应用 3D 模型时同时保存忠实的形状和纹理 。 为了解决这个问题, 我们设计了一个有效的自我培训计划, 以限制对反演化的学习。 学习是高效的, 没有真实世界 2D-3D 培训配对, 并且从 3D GAN 生成的代理样本。 此外, 除了全球潜值代码可以捕捉取导的形状和纹理质量信息, 此外, 由于全球隐性代码的重建功能, 我们用生成的版本的版本的版本的版本的版本的版本的版本的版本的版本, 我们用一个复制的版本的版本的版本的版本的版本的版本的版本的版本到演示的版本的版本的版本的版本的版本的版本的版本, 我们考虑一个版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本的版本, 。