The class-agnostic counting (CAC) problem has caught increasing attention recently due to its wide societal applications and arduous challenges. To count objects of different categories, existing approaches rely on user-provided exemplars, which is hard-to-obtain and limits their generality. In this paper, we aim to empower the framework to recognize adaptive exemplars within the whole images. A zero-shot Generalized Counting Network (GCNet) is developed, which uses a pseudo-Siamese structure to automatically and effectively learn pseudo exemplar clues from inherent repetition patterns. In addition, a weakly-supervised scheme is presented to reduce the burden of laborious density maps required by all contemporary CAC models, allowing GCNet to be trained using count-level supervisory signals in an end-to-end manner. Without providing any spatial location hints, GCNet is capable of adaptively capturing them through a carefully-designed self-similarity learning strategy. Extensive experiments and ablation studies on the prevailing benchmark FSC147 for zero-shot CAC demonstrate the superiority of our GCNet. It performs on par with existing exemplar-dependent methods and shows stunning cross-dataset generality on crowd-specific datasets, e.g., ShanghaiTech Part A, Part B and UCF_QNRF.
翻译:最近,由于其广泛的社会应用和艰巨的挑战,班级统计问题受到越来越多的关注。为了计算不同类别的对象,现有方法依靠用户提供的外观模型,这种模型难以观测并限制其普遍性。在本文件中,我们的目标是赋予该框架以在整个图像中识别适应性外观的框架权力。开发了一个零点点通用计数网络(GCNet),它使用假成像结构自动和有效地从固有的重复模式中学习假的假象示例。此外,还提出了一个薄弱的监管计划,以减少所有当代CAC模型所需的劳累性密度图的负担,使GCNet能够以端到端的方式使用数级监督信号进行培训。在不提供任何空间位置提示的情况下,GCNet能够通过精心设计的自我相似性学习战略来适应性地捕捉它们。对零点点CAC的FSC147基准进行广泛的实验和对比研究,展示了我们GCNet的优越性。它与现有的Exmpreg-NAC模型、A-CFS-Part Alidal-Part Adal-CFDR 和BSLAS-C-CF-CSDADADAD-C-C-SDDDDADADADADAD-S-SDADDAD-C-S-SDDDAs 和BSDD-C-SDSDDDAs 的CSB-S-SD-SD-SD-SD-SD-C-SDAR-SDAR-SDAR-SD-SDSDSDSDSDSDSDSDAR 和C-SDAR-C-C-C-C-SDSDSD-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-SDSDSDSDSDSDAR-C-C-C-SDAR-SDSDM-SB-C-C-SDA-S-C-C-C-C-C-C-C-SDADADA-C-C-C-C-C-C-C-C-C-C