Deep hashing methods have been shown to be the most efficient approximate nearest neighbor search techniques for large-scale image retrieval. However, existing deep hashing methods have a poor small-sample ranking performance for case-based medical image retrieval. The top-ranked images in the returned query results may be as a different class than the query image. This ranking problem is caused by classification, regions of interest (ROI), and small-sample information loss in the hashing space. To address the ranking problem, we propose an end-to-end framework, called Attention-based Triplet Hashing (ATH) network, to learn low-dimensional hash codes that preserve the classification, ROI, and small-sample information. We embed a spatial-attention module into the network structure of our ATH to focus on ROI information. The spatial-attention module aggregates the spatial information of feature maps by utilizing max-pooling, element-wise maximum, and element-wise mean operations jointly along the channel axis. The triplet cross-entropy loss can help to map the classification information of images and similarity between images into the hash codes. Extensive experiments on two case-based medical datasets demonstrate that our proposed ATH can further improve the retrieval performance compared to the state-of-the-art deep hashing methods and boost the ranking performance for small samples. Compared to the other loss methods, the triplet cross-entropy loss can enhance the classification performance and hash code-discriminability


翻译:深 hash 方法已被证明是最高效的近邻搜索技术, 用于大规模图像检索。 但是, 现有的深 hash 方法在基于案例的医疗图像检索方面, 不太具有小样本排序性能。 返回的查询结果中最上层图像可能与查询图像不同。 这个排序问题是由分类、 感兴趣的区域( ROI) 和散列空间中小样本信息损失造成的。 为了解决排序问题, 我们提议了一个端到端的框架, 叫做 注意的 Triplet Hashing( ATH) 网络, 以学习维护分类、 ROI 和 小样本信息的低维级散记分级性功能。 我们将一个空间关注模块嵌入我们的 ATH的网络结构中, 侧重于 ROI 信息。 空间关注模块将地貌地图的空间信息汇总在一起, 使用最大集合、 元素间最大 和元素间平均操作。 三端交叉损失分类可以帮助绘制基于医学的图像的分类信息以及相似性能的低维度代码 。 将不同的图像和相似性缩缩缩缩缩图的测试方法 。

0
下载
关闭预览

相关内容

医学图像分割的深度学习解决方案综述
专知会员服务
87+阅读 · 2020年2月14日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
从手工提取特征到深度学习的三种图像检索方法
Arxiv
16+阅读 · 2021年1月27日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Arxiv
9+阅读 · 2018年5月7日
VIP会员
相关VIP内容
医学图像分割的深度学习解决方案综述
专知会员服务
87+阅读 · 2020年2月14日
Top
微信扫码咨询专知VIP会员