题目: Embracing Imperfect Datasets:A Review of Deep Learning Solutions for Medical Image Segmentation
摘要: 医学影像文献在基于卷积神经网络的高性能分割模型方面取得了显著进展。尽管新的性能很高,最近的高级分割模型仍然需要海量的、典型的,高质量的带有标签的数据集。然而,我们很少有一个完美的训练数据集,特别是在医学图像领域,因为获取数据和打标签都是昂贵的。近年来,大量的研究对不完全数据集的医学图像分割问题进行了研究,解决了两大数据集的局限性:一是训练有标签的数据太少,只有有限的标签数据可用;二是训练数据只有稀疏标签、噪声标签或图像级标签的软标签。在本文中,我们对上述解决方案进行了详细的回顾,总结了技术创新和经验结果。我们进一步比较涉及的方法的好处和要求,并提供我们推荐的解决方案。我们希望这篇综述文章能提高公众对处理不完善的医学图像分割数据集的技术的认识。