Multiuser massive multiple-input multiple-output (MU-MIMO) systems can be used to meet high throughput requirements of 5G and beyond networks. In an uplink MUMIMO system, a base station is serving a large number of users, leading to a strong multi-user interference (MUI). Designing a high performance detector in the presence of a strong MUI is a challenging problem. This work proposes a novel detector based on the concepts of expectation propagation (EP) and graph neural network, referred to as the GEPNet detector, addressing the limitation of the independent Gaussian approximation in EP. The simulation results show that the proposed GEPNet detector significantly outperforms the state-of-the-art MU-MIMO detectors in strong MUI scenarios with equal number of transmit and receive antennas.
翻译:多用户大规模多投入多输出(MU-MIMO)系统可用于满足5G网络和网络以外的高输送量需求。在MUMIMO上行系统中,一个基地站为大量用户服务,导致一个强大的多用户干扰(MUI)。在强大的MUI面前设计高性能探测器是一个具有挑战性的问题。这项工作提议根据预期传播和图形神经网络(称为GEPNet探测器)的概念,建立一个新型探测器,处理EPNet中独立高斯近似的局限性。模拟结果表明,拟议的GEPNet探测器明显地超越了高斯近似器在强烈的MUII假想中最先进的MU-MIMO探测器,其传输和接收天线的数量相等。