In pathology, whole-slide images (WSI) based survival prediction has attracted increasing interest. However, given the large size of WSIs and the lack of pathologist annotations, extracting the prognostic information from WSIs remains a challenging task. Previous studies have used multiple instance learning approaches to combine the information from multiple randomly sampled patches, but different visual patterns may contribute differently to prognosis prediction. In this study, we developed a multi-head attention approach to focus on various parts of a tumor slide, for more comprehensive information extraction from WSIs. We evaluated our approach on four cancer types from The Cancer Genome Atlas database. Our model achieved an average c-index of 0.640, outperforming two existing state-of-the-art approaches for WSI-based survival prediction, which have an average c-index of 0.603 and 0.619 on these datasets. Visualization of our attention maps reveals each attention head focuses synergistically on different morphological patterns.
翻译:在病理学方面,基于全滑动图像(WSI)的存活预测引起了越来越多的兴趣。然而,鉴于世界滑动图像(WSI)的庞大规模和缺乏病理学说明,从世界滑动图像(WSI)中提取预测性信息仍是一项艰巨的任务。以前的研究采用多个实例学习方法,将来自多个随机抽样采集的补丁的信息结合起来,但不同的视觉模式可能对预测性预测有不同的贡献。在这项研究中,我们开发了一个多点关注方法,将重点放在肿瘤幻灯片的各个部分,以便从世界滑动中更全面地提取信息。我们从癌症基因组Atlas数据库中评估了四种癌症类型的方法。我们的模式实现了平均为0.640的C-index,优于现有两种基于WSI的生存预测的最新方法,这些数据集的平均c-index为0.603和0.619。我们的注意力分布图的视觉化显示每个关注点都以不同形态模式为协同重点。