In the last years, neural networks have proven to be a powerful framework for various image analysis problems. However, some application domains have specific limitations. Notably, digital pathology is an example of such fields due to tremendous image sizes and quite limited number of training examples available. In this paper, we adopt state-of-the-art convolutional neural networks (CNN) architectures for digital pathology images analysis. We propose to classify image patches to increase effective sample size and then to apply an ensembling technique to build prediction for the original images. To validate the developed approaches, we conducted experiments with \textit{Breast Cancer Histology Challenge} dataset and obtained 90\% accuracy for the 4-class tissue classification task.
翻译:过去几年来,神经网络被证明是各种图像分析问题的强大框架,然而,一些应用领域有具体的局限性。值得注意的是,数字病理学是这类领域的一个实例,因为图像大小巨大,培训实例数量有限。在本文件中,我们采用了最先进的神经神经网络结构来进行数字病理图象分析。我们提议对图像补丁进行分类,以提高有效的样本规模,然后采用组合技术为原始图像建立预测。为了验证已经开发的方法,我们用\textit{Breast Cast Cast Cristic HistlogyChallenge} 数据集进行了实验,并获得了四级组织分类任务的90 % 的精确度。